夜猫直播官方版-夜猫直播直播视频在线观看免费版下载-夜猫直播安卓版本免费安装

學(xué)生作文網(wǎng) > 單元作文 > 高中第五冊 > [第三單元]自然科學(xué)小論文 >

自然科學(xué)小論文范文

時間: 欣欣2 [第三單元]自然科學(xué)小論文

  自然科學(xué)是研究無機自然界和包括人的生物屬性在內(nèi)的有機自然界的各門科學(xué)的總稱。論文常用來指進行各個學(xué)術(shù)領(lǐng)域的研究和描述學(xué)術(shù)研究成果的文章,簡稱之為論文。以下科學(xué)小論文歡迎大家參閱!

  淺談“最大公約數(shù)”在實際中的應(yīng)用

  我們小學(xué)五年級第二學(xué)期的數(shù)學(xué)課本,講到了“最大公約數(shù)”的問題。這個概念非常重要,在實際生活中的應(yīng)用也很廣泛。下面,我就來談?wù)勥@個問題:

  一、“最大公約數(shù)”的概念:

  要了解這個問題,首先要知道什么叫“約數(shù)”。我們說,如果整數(shù)a能被整數(shù)b(b≠0)整除,那么a就叫做b的倍數(shù),b就叫做a的“約數(shù)”。例如:12能被1、2、3、4、6、12這六個數(shù)整除,那么12就叫做這六個數(shù)的倍數(shù),這六個數(shù)就分別叫做12的約數(shù)。在這里,我們可以看出,一個數(shù)的約數(shù)的個數(shù)是有限的,其中最小的約數(shù)是1,最大的約數(shù)是它本身。

  那么,什么是“公約數(shù)”呢?我們說,幾個數(shù)“公有”的約數(shù),就叫做這幾個數(shù)的“公約數(shù)”。例如:12的約數(shù)是1、2、3、4、6、12;18的約數(shù)是1、2、3、6、9、18;那么12和18“公有”的約數(shù)1、2、3、6,就叫做12和18的“公約數(shù)”。這四個“公約數(shù)”中,1最小,6最大,那么1就叫做12和18的“最小公約數(shù)”,6就叫做12和18的“最大公約數(shù)”。由此可以看出,幾個數(shù)的“最大公約數(shù)”,就是它們的“公約數(shù)”中最大的一個。

  二、求“最大公約數(shù)”的方法:

  求幾個數(shù)的“最大公約數(shù)”,就是先分別求出每個數(shù)的“約數(shù)”,然后找出它們的“公約數(shù)”,再在“公約數(shù)”中找出最大的一個。這里,有兩個非常重要的概念,就是“質(zhì)數(shù)”和“合數(shù)”。課本上的定義是:一個數(shù),如果只有1和它本身兩個約數(shù),這樣的數(shù)叫做“質(zhì)數(shù)”。例如:2、3、5、7、11都是“質(zhì)數(shù)”。一個數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)就叫做“合數(shù)”。例如:4、6、8、9、10、12都是“合數(shù)”。每個“合數(shù)”都可以寫成幾個“質(zhì)數(shù)”相乘的形式。例如:60=6×10=2×3×2×5;28=4×7=2×2×7。其中每個“質(zhì)數(shù)”都是這個“合數(shù)”的因數(shù),也叫做這個“合數(shù)”的“質(zhì)因數(shù)”。像這樣把一個合數(shù)用“質(zhì)因數(shù)”相乘的形式表示出來,就叫做“分解質(zhì)因數(shù)”。1既不是“質(zhì)數(shù)”,也不是“合數(shù)”。公約數(shù)只有1的兩個數(shù),叫做“互質(zhì)數(shù)”。

  求幾個數(shù)的“最大公約數(shù)”,可以用“分解質(zhì)因數(shù)法”和“短除法”中的任意一個。一般為了簡便,常常采用“短除法”來求幾個數(shù)的“最大公約數(shù)”。所謂短除法:就是先用一個能整除這幾個合數(shù)的最小質(zhì)數(shù)(除數(shù)),同時去除這幾個合數(shù),得出的商如果有一個是質(zhì)數(shù),則這個除數(shù)就是這幾個合數(shù)的“最大公約數(shù)”;如果得出的商都是合數(shù),就照上面的方法繼續(xù)除下去,直到得出的商有一個是質(zhì)數(shù)為止,然后把各個除數(shù)相乘,就是這幾個合數(shù)的“最大公約數(shù)”。

  三、“最大公約數(shù)”在實際中的應(yīng)用:

  求“最大公約數(shù)”的方法,在我們的實際生活中應(yīng)用非常廣泛。下面舉一個例子說明如下:

  “一張長方形的鋼板,長75厘米、寬60厘米?,F(xiàn)在要把它切割成若干塊小正方形,要求正方形的邊長為整厘米數(shù),有幾種切割法?如果要使切割的正方形面積最大,可以切多少塊?”

  解決這個問題,可以用求“公約數(shù)”和“最大公約數(shù)”的方法。因為切割的正方形邊長必須能同時整除75厘米和60厘米,這就是求75和60的“公約數(shù)”的問題;要使切割成的小正方形面積最大,也就是要使它的邊長最大,這就是求75和60的“最大公約數(shù)”的問題。

  解題:

  1、用“分解質(zhì)因數(shù)法”求出75和60的“公約數(shù)”:

  75=3×25=3×5×5; 60=2×30=2×2×15=2×2×3×5

  75和60的“公約數(shù)為:1、3、5、15,所以,有4種不同的切割方法。

  2、用“短除法”求出75和60的“最大公約數(shù)”:

  3|_ 75__60_

  5|_25__20

  5 4

  所以,75和60的“最大公約數(shù)”是:3×5=15

  要使切割成的小正方形面積最大,可以切割的塊數(shù)是:

  (75 ÷15)×(60÷15)=5×4=20(塊)

  由此可以看出,我們現(xiàn)在所學(xué)的各種知識,都是和社會和現(xiàn)實生活密切相關(guān)的。要建設(shè)好我們的國家,就要從小學(xué)好各種知識。只有這樣,才能使自己將來成為一個對社會有用的人!

267465